References
- Barachant, A.; Bonnet, S.; Congedo, M. and Jutten, C. (2012). Multi-class Brain Computer Interface Classification by Riemannian Geometry. IEEE Transactions on Biomedical Engineering 59, 920–928.
- Carrara, I. and Papadopoulo, T. (2024). Classification of BCI-EEG based on the augmented covariance matrix. IEEE Transactions on Biomedical Engineering 71, 2651–2662.
- Congedo, M. (2013). EEG Source Analysis. HDR Thesis presented at the University of Grenoble.
- Congedo, M. (2018). Non-Parametric Synchronization Measures used in EEG and MEG (GIPSA-lab).
- Congedo, M.; Barachant, A. and Bhatia, R. (2017). Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces 4, 155–174.
- Congedo, M.; Gouy-Pailler, C. and Jutten, C. (2008). On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics. Clinical Neurophysiology 119, 2677–2686.
- Congedo, M.; Korczowski, L.; Delorme, A. and Silva, F. L. (2016). Spatio-temporal common pattern: A companion method for ERP analysis in the time domain. Journal of Neuroscience Methods 267, 74–88. Epub 2016 Apr 16.
- Gouy-Pailler, C.; Congedo, M.; Brunner, C.; Jutten, C. and Pfurtscheller, G. (2010). Nonstationary Brain Source Separation for Multiclass Motor Imagery. IEEE Transactions on Biomedical Engineering 57, 469–478.
- Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 88, 365–411.
- Ledoit, O. and Wolf, M. (2020). The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation. Journal of Financial Econometrics, 1–32.
- Molgedey, L. and Schuster, H. G. (1994). Separation of a Mixture of Independent Signals Using Time Delayed Correlations. Physical Review Letters 72, 3634–3637.
- Searle, S. R. (1982). Matrix Algebra Useful for Statistics (John Wiley & Sons, New York).
- Tyler, D. E. (1987). A Distribution-Free M-Estimator of Multivariate Scatter. The Annals of Statistics 15, 234–251.
- Wiskott, L. and Sejnowski, T. J. (2002). Slow Feature Analysis: Unsupervised Learning of Invariances. Neural Computation 14, 715–770.
- Zhang, T. and Wiesel, A. (2016). Automatic Diagonal Loading for Tyler's Robust Covariance Estimator. In: IEEE Statistical Signal Processing Workshop (SSP); pp. 1–5.