NY Metadata (YAML)
This document describes the standard dictionary structure used in .yml metadata files for EEG time series data in the NY format.
Overview
The YAML format is used to share EEG metadata in both Python and Julia environments. Each .yml file provides comprehensive metadata for its corresponding .npz data file.
Dictionary Structure
The YAML file contains the following top-level keys:
formatversionacquisitiondocumentationidstimperf(since formatversion0.0.3)
formatversion
Specifies the version of the YAML metadata format.
| Field | Type | Description | Example |
|---|---|---|---|
formatversion | String | Metadata format version number | "0.0.3" |
acquisition
Contains all technical information about the EEG data acquisition process.
| Field | Type | Description | Example |
|---|---|---|---|
filter | String | Filter settings of the EEG acquisition machine | "Low-Pass 83Hz (Butterworth order 4 zero phase) for downsampling" |
ground | String | Location of the ground electrode | "Fpz" or "N/A" |
reference | String | Location of the reference electrode | "A1" or "N/A" |
hardware | String | Commercial name and producer of EEG amplifier | "g.tec EEG - g.USBamp EEG amplifier" |
software | String | Software used for data acquisition | "OpenViBE, INRIA (France)" or "N/A" |
samplingrate | Integer | Sampling rate in Hz | 256 |
sensors | Array of Strings | EEG electrode locations (excluding ground/reference) | ["Fpz", "F7", "F3", "Fz", ...] |
sensortype | String | Type and material of electrodes | "Ag/AgCl Wet electrodes" |
documentation
Contains references and documentation links for the dataset.
| Field | Type | Description | Example |
|---|---|---|---|
description | String | Link to dataset description | "https://zenodo.org/records/806023" |
doi | String | Digital Object Identifier | "https://theses.hal.science/tel-01196752" |
investigators | String | Principal investigators | "Alexandre Barachant" |
place | String | Institution where experiment was conducted | "GIPSA-lab..." |
repository | String | Link to data repository | "https://zenodo.org/records/806023" |
id
Contains identification information for the specific recording.
| Field | Type | Description | Example |
|---|---|---|---|
condition | String | Experimental condition | "None" or specific condition |
database | String | Name of the database | "AlexMI" |
paradigm | String | BCI paradigm type | "MI" or "P300" |
run | Integer | Run number within session | 1 |
session | Integer | Session number | 1 |
subject | Integer | Subject identifier | 1 |
timestamp | Integer | Year of data collection | 2012 |
stim
Contains stimulation and labeling information.
| Field | Type | Description | Example |
|---|---|---|---|
labels | Dictionary | Mapping of class names to numeric codes | {right_hand: 2, feet: 3, rest: 4} |
nclasses | Integer | Total number of stimulus classes | 3 |
trials_per_class | Dictionary | Number of trials available for each class | {feet: 20, rest: 20, right_hand: 20} |
offset | Integer | Offset in samples from stimulation to trial start | 0 |
windowlength | Integer | Trial duration in samples | 768 |
perf (formatversion 0.0.3 and above)
Contains classification performance metrics associated with this recording/subject.
For MI paradigm, performances are organized by task pair and classifier.
| Field | Type | Description | Example key |
|---|---|---|---|
<task> | Dictionary | Accuracy per classifier for a given task | right_hand-feet |
Inside each task:
| Field | Type | Description | Example |
|---|---|---|---|
MDM | Float | Accuracy of MDM classifier | 0.825 |
ENLR | Float | Accuracy of ENLR classifier | 0.65 |
SVM | Float | Accuracy of SVM classifier | 0.675 |
For P300 paradigms, perf usually contains global accuracies per classifier (without task subkeys).
Example Structure (formatversion 0.0.3)
acquisition:
filter: Low-Pass 83Hz (Butterworth order 4 zero phase) for downsampling
ground: N/A
hardware: g.tec EEG - g.USBamp EEg amplifier
reference: N/A
samplingrate: 256
sensors:
- Fpz
- F7
- F3
- Fz
- F4
- F8
- T7
- C3
- Cz
- C4
- T8
- P7
- P3
- Pz
- P4
- P8
sensortype: Ag/AgCl Wet electrodes
software: N/A
documentation:
description: https://zenodo.org/records/806023
doi: https://theses.hal.science/tel-01196752
investigators: Alexandre Barachant
place: 'Laboratoire Electronique et systeme pour la sante CEA-LETI dans l''Ecole Doctorale : EEATS, Universite de Grenoble'
repository: https://zenodo.org/records/806023
formatversion: 0.0.3
id:
condition: None
database: AlexMI
paradigm: MI
run: 1
session: 1
subject: 1
timestamp: 2012
stim:
labels:
right_hand: 2
feet: 3
rest: 4
nclasses: 3
trials_per_class:
right_hand: 20
feet: 20
rest: 20
offset: 0
windowlength: 768
perf:
right_hand-feet:
MDM: 0.825
ENLR: 0.65
SVM: 0.675