Miscellaneous.jl
This module implements miscellaneous utilities.
| Function | Description |
|---|---|
Eegle.Miscellaneous.remove | remove elements from vectors and rows or columns from matrices |
Eegle.Miscellaneous.isSquare | check that a matrix is square |
Eegle.Miscellaneous.minima | local minuma of a sequence |
Eegle.Miscellaneous.maxima | local maxima of a sequence |
📖
Eegle.Miscellaneous.remove — Function
function remove(X::Union{Vector, Matrix},
what::Union{Int, Vector{Int}};
dims=1)Return vector X removing one or more elements, or matrix X removing one or more columns or rows.
If X is a matrix, dims=1 (default) remove rows, dims=2 remove columns.
If X is a Vector, dims has no effect.
The what argument can be either an integer or a vector of integers
See Also Eegle.Preprocessing.removeSamples, Eegle.Preprocessing.removeChannels
Examples
using Eegle # or using Eegle.Miscellaneous
a=randn(5)
b=remove(a, 2) # remove second element
b=remove(a, collect(1:3)) # remove rows 1 to 3
A=randn(3, 3)
B=remove(A, 2) # remove second row
B=remove(A, 2; dims=2) # remove second column
A=randn(5, 5)
B=remove(A, collect(1:2:5)) # remove rows 1, 3 and 5
C=remove(A, [1, 4]) # remove rows 1 and 4
# remove columns 2, 3, 8, 9, 10
A=randn(10, 10)
B=remove(A, [collect(2:3); collect(8:10)]; dims=2)
# remove every other sample (decimation by a factor of 2)
A=randn(10, 10)
B=remove(A, collect(1:2:size(A, 1)); dims=1)
# NB: before decimating the data must be low-pass filtered,
# see the documentation of `resample`Eegle.Miscellaneous.isSquare — Function
function isSquare(X)Return true if X is an AnyMatrix and is square, false otherwise.
Eegle.Miscellaneous.minima — Function
function minima(v::AbstractVector{T})
where T<:RealReturn the 2-tuple formed by the vector of local minima of vector v and the vector of the indices of v corresponding to the minima.
This is useful in several situations. For example, Eegle uses it to segment spontaneous EEG data (see Eegle.Processing.epoching).
Eegle.Miscellaneous.maxima — Function
function maxima(v::AbstractVector{T})
where T<:RealReturn the 2-tuple formed by the vector of local maxima of vector v and the vector of the indices of v corresponding to the maxima.